Chapter 6 The NER protein Rad 33 shows functional homology to human Centrin 2 and is involved in modification of Rad 4
نویسندگان
چکیده
In the yeast Saccharomyces cerevisiae the Rad4-Rad23 complex is implicated in the initial damage recognition of the Nucleotide Excision Repair (NER) pathway. NER removes a variety of lesions via two subpathways: Transcription Coupled Repair (TCR) and Global Genome Repair (GGR). We previously showed that the new NER protein Rad33 is involved in both NER subpathways TCR and GGR. In the present study we show UV induced modification of Rad4 that is strongly increased in cells deleted for RAD33. Modification of Rad4 in rad33 cells does not require the incision reaction but is dependent on the TCR factor Rad26. The predicted structure of Rad33 shows resemblance to the Centrin homologue Cdc31. In human cells, Centrin2 binds to XPC and is involved in NER. We demonstrate that Rad4 binds Rad33 directly and via the same conserved amino acids required for the interaction of XPC with Centrin2. Disruption of the Rad4-Rad33 interaction is sufficient to enhance the modification of Rad4 and results in a repair defect similar to that of a rad33 mutant. The current study suggests that the role of Rad33 in the Rad4-Rad23 complex might have parallels with the role of Centrin2 in the XPC-HHR23B complex. Rad33 is involved in the modification of Rad4
منابع مشابه
Radiation-sensitive mutants of Caenorhabditis elegans.
Nine rad (for abnormal radiation sensitivity) mutants hypersensitive to ultraviolet light were isolated in the small nematode Caenorhabditis elegans. The mutations are recessive to their wild-type alleles, map to four of the six linkage groups in C. elegans and define nine new games named rad-1 through rad-9. Two of the mutants--rad-1 and rad-2--are very hypersensitive to X rays, and three--rad...
متن کاملStructure-function analysis of the EF-hand protein centrin-2 for its intracellular localization and nucleotide excision repair
Centrin-2 is an evolutionarily conserved, calmodulin-related protein, which is involved in multiple cellular functions including centrosome regulation and nucleotide excision repair (NER) of DNA. Particularly to exert the latter function, complex formation with the XPC protein, the pivotal NER damage recognition factor, is crucial. Here, we show that the C-terminal half of centrin-2, containing...
متن کاملDifferential expression and cellular distribution of centrin isoforms during human ciliated cell differentiation in vitro.
Centrin protein is an ubiquitously expressed cytoskeletal component and is a member of the EF-hand superfamily of calcium-binding proteins. It was first discovered in the flagellar apparatus of unicellular green algae where it is involved in contraction of Ca(2+)-sensitive structures. Centrin protein is associated with centrosome-related structures such as spindle pole body in yeast, and centri...
متن کاملP-157: Polymorphic Core Promoter GA-repeats Alter Gene Expression of The Early Embryonic Developmental Genes
Background: We examine the GA-repeat core promoters of MECOM and GABRA3 in human embryonic kidney-293 cell line and show that those GA-repeats have promoter activity,and those different alleles of the repeats can significantly alter gene expression.We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution. Materials and M...
متن کاملSUMO-dependent regulation of centrin-2.
Centrins are multifunctional Ca(2+)-binding proteins that are highly conserved from yeast to humans. Centrin-2 is a core component of the centrosome of higher eukaryotes. In addition, it is present within the nucleus, in which it is part of the xeroderma pigmentosum group C (XPC) complex, which controls nucleotide excision repair (NER). Regulation of the subcellular distribution of centrin-2 ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008